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Abstract
A lower bound for ρ̄ ′′(0), the second derivative of the spherically averaged
atomic electronic density at the nucleus, and an upper bound for ρ̄ ′′′(0), the
third derivative, are obtained, respectively. It is shown that, for the ground
state, ρ̄ ′′(0) � 10

3 Z2ρ(0) and ρ̄ ′′′(0) � − 14
3 Z3ρ(0), where Z is the charge of

the nucleus, and ρ(0) is the electron density at the nucleus. Tighter bounds for
ρ̄ ′′(0) and ρ̄ ′′′(0) are also reported which are valid for both the ground state and
excited states. Explicit illustration with the example of one-electron atomic
ions is given.

PACS numbers: 31.15.Ew, 31.10.+z, 71.10.−w

1. Introduction

Rigorous knowledge of electron density is rather valuable in understanding the electronic
structure of atoms, molecules and solids. It is also helpful in guiding the construction of the
approximations for the exchange-correlation energy functional and the corresponding potential
in the approach of density functional theory [1] to the problems of inhomogeneous electron
systems. One of the well-known exact results is the so-called Kato theorem [2] which states
that, near any nucleus,

ρ̄ ′(r)|r=0 = −2Zρ(0). (1)

Here Z is the charge of the nucleus which is taken as the origin; f̄ (r) means the spherical
average of function f (r); primes denote the derivatives with respect to r in this paper.

In recent work [3], by investigating the behavior of the wavefunctions of the interacting
Schrödinger system and the corresponding noninteracting Kohn–Sham system in the vicinity
of the nucleus, we established relations between the second and the third derivatives of the
spherically averaged density at the nucleus. They could be understood as extensions of the cusp
condition of equation (1) to higher orders of derivatives. In this paper, we derive rigorously a
lower bound for the second derivative and an upper bound for the third derivative, respectively,
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of the spherically averaged density at the nucleus for the ground state. The bounds are given
as follows:

ρ̄ ′′(0) � 10
3 Z2ρ(0) (2)

and

ρ̄ ′′′(0) � − 14
3 Z3ρ(0). (3)

The results hold in general whether the system is an atom, molecule or a solid. Tighter bounds
for ρ̄ ′′(0) and ρ̄ ′′′(0) are also reported (see equations (23) and (24) in section 3) which are
valid for the excited states as well.

In section 2, we discuss the near nucleus behavior of the wavefunction of the Schrödinger
equation and the density. The derivation for the bounds is presented in section 3. In section 4
explicit illustration for the case of one-electron atomic ions is given. Summarizing remarks
are made in section 5.

2. Near nucleus behavior of the wavefunction and the density

The Schrödinger equation for N-electrons in an external potential v(r) arising from their
interaction with nuclei is (in au)

Ĥ� = (T̂ + V̂ + Û )� = E�, (4)

where T̂ = − 1
2

∑
i �2

i , V̂ = ∑
i v(ri ), Û = 1

2

∑
i �=j

1
|ri−rj | , � the wavefunction and E the

energy. Following [3], we write, for limiting small r, the many-body wavefunction as

�(r, X) = �(0, X) + a(X)r + b(X)r2 + c(X)r3 + · · ·

+
1∑

m=−1

[a1m(X)r + b1m(X)r2 + · · ·]Y1m(r̂) +
2∑

m=−2

[b2m(X)r2 + · · ·]Y2m(r̂) + · · · ,

(5)

where r̂ = r/r, X denotes s, r2s2, . . . , rNsN , and Ylm(r̂) are the spherical harmonics. For
r → 0, the Schrödinger equation (4) can be rewritten as [3][

−1

2
�2 −Z

r
+ r

1∑
m=−1

Y1m(r̂)gm(X)

]
�(r, X) + HN−1

Z−1 (X)�(r, X) = E�(r, X), (6)

where

gm(X) = 4π

3

N∑
i=2

1

r2
i

Y ∗
1m(r̂i) (7)

and

HN−1
Z−1 (X) =

N∑
i=2

[
−1

2
�2

i +v(ri ) +
1

ri

]
+

1

2

N∑
i �=j �=1

1

|ri − rj | . (8)

Substituting the expression of equation (5) into equation (6) and equating the coefficients of
the terms of r−1, r0Y1m(r̂), r0, and r1, respectively, one has

a(X) + Z�(0, X) = 0, (9)

2b1m(X) + Za1m(X) = 0, (10)

3b(X) − Z2�(0, X) = [
HN−1

Z−1 (X) − E
]
�(0, X), (11)
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6c(X) + Zb(X) = Z
[
E − HN−1

Z−1 (X)
]
�(0, X). (12)

We note that the behavior of the wavefunction in the vicinity of the nucleus has been extensively
investigated [2–4]. In fact, equations (9) and (10) have been obtained previously. On the other
side, equations (11) and (12), which shall play a key role in the derivation in section 3, have
not been previously reported in this separate form.

The density is defined as

ρ(r) = N

∫
dX|�(r, X)|2, (13)

where
∫

dX denotes
∑

s

∫
dx2 · · · dxN . With the relations in equations (9) and (10), it can be

shown that

ρ̄ ′′(0) = 2Z2ρ(0) + 4N

∫
dX Re[�∗(0, X)b(X)] + 2N

∫
dX

1∑
m=−1

1

4π
|a1m(X)|2 (14)

and

ρ̄ ′′′(0) = 12N

∫
dX Re[�∗(0, X)(c(X) − Zb(X))] − 6ZN

∫
dX

1∑
m=−1

1

4π
|a1m(X)|2 (15)

(see also [3].) This completes the discussion of the behavior of the wavefunction and the
density near the nucleus.

3. Derivation of equations (2) and (3)

We observe that equations (11), (12) and equation (13) lead to

N

∫
dX Re[�∗(0, X)b(X)] � 1

3

(
Z2 − E + EN−1

Z−1,0

)
ρ(0), (16)

N

∫
dX Re[�∗(0, X)c(X)] � 1

18
Z

(−Z2 + 4E − 4EN−1
Z−1,0

)
ρ(0), (17)

where EN−1
Z−1,0 is the ground state energy of the Hamiltonian HN−1

Z−1 (X). Inequalities (16)
and (17) are critical equations in the following derivation. Comparing them with equation (14)
and equation (15), respectively, one has

ρ̄ ′′(0) � 10

3
Z2ρ(0) +

4

3

(
EN−1

Z−1,0 − E
)
ρ(0) + 2N

∫
dX

1∑
m=−1

1

4π
|a1m(X)|2 (18)

and

ρ̄ ′′′(0) � −14

3
Z3ρ(0) − 20

3
Z

(
EN−1

Z−1,0 − E
)
ρ(0) − 6ZN

∫
dX

1∑
m=−1

1

4π
|a1m(X)|2. (19)

In passing, we mention that, at the nucleus, the kinetic energy density, which is defined as

t (r) = 1

2
N

∫
dX � �∗(r, X) · ��(r, X), (20)

has been shown in [3] as

t̄ (0) − 1

2
Z2ρ(0) = N

∫
dX

1∑
m=−1

3

8π
|a1m(X)|2. (21)
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Equation (21) indicates that

t̄ (0) � 1
2Z2ρ(0). (22)

The existence of the term on the right-hand side of equation (21) had not been recognized
before [5].

From equations (18) and (19), one obtains

ρ̄ ′′(0) � 10
3 Z2ρ(0) + 4

3

(
EN−1

Z−1,0 − E
)
ρ(0), (23)

and

ρ̄ ′′′(0) � − 14
3 Z3ρ(0) − 20

3 Z
(
EN−1

Z−1,0 − E
)
ρ(0). (24)

Up to this point, all the calculations are in fact not restricted to the ground state. The bounds
shown in equations (23) and (24) are valid for both the ground state and excited states. For
the ground state we further obtain equations (2) and (3) from equations (23) and (24).

4. Illustration for one-electron atomic ions

For one-electron atomic ions (including hydrogen atom), equations (23) and (24) become

ρ̄ ′′(0) � 2
3 (5Z2 − 2E)ρ(0) (25)

and

ρ̄ ′′′(0) � − 2
3Z(7Z2 − 10E)ρ(0). (26)

The wavefunctions are exactly known for both the ground state and excited states: �(r) =
Rnl(r)Ylm(r̂), with [6]

Rnl(r) = −
{
α3+2l

n

(n − l − 1)!

2n[(n + l)!]3

}1/2

e−αnr/2rlL2l+1
n+l (αnr), (27)

where αn = 2Z/n, and L2l+1
n+l (αnr) are the Laguerre polynomials. It is easy to see that for

l �= 1, a1m = 0 in equations (18) and (19), and equations (23) and (24) in fact become
equalities:

ρ̄ ′′(0) = 2
3 (5Z2 − 2E)ρ(0), (28)

and

ρ̄ ′′′(0) = − 2
3Z(7Z2 − 10E)ρ(0). (29)

We next give an explicit illustration of the results with the exactly known wavefunctions.
Obviously for l � 2 equations (28) and (29) are trivially true since all ρ(0), ρ̄ ′′(0), and ρ̄ ′′′(0)

are zero. For l = 0, one can obtain from equation (27)

ρ̄(r) = Z3

πn3

[
1 − 2Zr +

1

3
Z2

(
5 +

1

n2

)
r2 − 1

9
Z3

(
7 +

5

n2

)
r3 + · · ·

]
. (30)

Equations (28) and (29) are hence confirmed with the help of the fact that E = −Z2/2n2. For
l = 1, one has

ρ̄(r) = 1

9π

(
Z

n

)5

(n2 − 1)r2(1 − Zr + · · ·). (31)

The inequalities of equations (25) and (26) are satisfied. Note that in this case a1m �= 0 in
equations (18) and (19).
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5. Summary

In summary, in this paper, we have established for the ground state the lower bound for ρ̄ ′′(0),
the second derivative of the spherically averaged electron density at the nucleus, in equation (2),
and the upper bound for ρ̄ ′′′(0), the third derivative, in equation (3). Tighter bounds for ρ̄ ′′(0)

and ρ̄ ′′′(0), valid for both the ground state and excited states, are also reported in equations
(23) and (24). These results add some to our rigorous information of the electron density,
which might be valuable in the calculation of the electronic structure of atomic systems.

Whether the opposite bounds exist for ρ̄ ′′(0) and ρ̄ ′′′(0) remains an interesting question.
Not unrelated to this question is the fact that both upper and lower bounds have been extensively
explored for ρ(0) (and, according to equation (1), equally for ρ̄ ′(0)) [7].
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Note added. During the preparation of this manuscript, the author became aware of related work [8]. The bounds
shown in equations (2) and (3) in this paper are indeed the same as those in equations (1.25) and (1.32) in [8] (up to
a different form of Hamiltonians). There are, however, minor differences between inequalities (23) and (24) of the
present paper and the first inequalities of equations (1.25) and (1.32) in [8]. In fact, EN−1

Z−1,0 − E can be rewritten as

EN−1
Z−1,0 − EN−1

Z,0 − µ, where µ = E − EN−1
Z,0 is the minus the ionization energy and denoted as −ε in equation (1.20)

in [8]. Since EN−1
Z−1,0 − EN−1

Z,0 � 0, it is easy to see that the bounds in equations (23) and (24) are tighter than those
given by the first inequalities of equations (1.25) and (1.32). The differences were also recognized and analyzed in
Remark 1.4 in [8], though equations like inequalities (23) and (24) were not explicitly given there.
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